
BIT 8 (1968), 174--186

A CONSTRUCTIVE APPROACH

TO THE PROBLEM OF PROGRAM CORRECTNESS

E. W. DIJKSTRA

Abstract .

As an alternative to methods by which the correctness of given programs can
be established a posteriori, this paper proposes to control the process of program
generation such as to produce a priori correct programs. An example is treated to
show the form that such a control might then take. This example comes from the
field of parallel programming; the way in which it is treated is representative of
the way in which a whole multiprogramming system has actually been constructed.

Key words: Algorithms, proof, correctness.

1. Introduction.

The more ambitious we become in our machine applications, the more
vital becomes the problem of program correctness. The growing atten-
tion being paid to this problem is therefore a quite natural and sound
development. As far as I am aware (see [1], [2], [3]), however, the prob-
lem has been tackled, posed roughly in the following form: "Given an
algorithm and given specifications of its desired dynamic behaviour,
prove then tha t the dynamic behaviour of the given algorithm meets
the given specifications." After sufficient formalization of the way in
which the algorithm and specifications are given, we are faced with a
well-posed problem of some mathematical appeal.

In this paper I shall tackle the problem from the other side: "Given
the specifications of the desired dynamic behaviour, how do we derive
from these an algorithm meeting them in its dynamic behaviour?" .
For certain mathematical minds the latter problem will be less attrac-
tive (for one thing: the algorithm to be derived is not uniquely defined
by the specifications given); it seems, however, to be of much greater
practical value because, as a rule, we have to construct the algorithm
as well.

This paper has been written because the approach seems unusual,
while my collaborators and I have followed it very consciously and seem
to have done so to our great advantage. I also publish it in the hope that
it may serve as a partial answer to the many doubts evoked by our
claim to have constructed a multiprogramming system of proven flaw-
lessness.

A C O N S T R U C T I V E A P P R O A C H T O T H E P R O B L E S ~ O F P R O G R A M . . . 175

In this paper I shall illustrate the method by deriving an algorithm
meeting specifications, whose simplicity has been chosen in order to
avoid an unnecessarily lengthy paper. In doing so I am running the risk
of readers not believing in the practicability of the method when applied
to large problems. To those I can only say first, that the art of reasoning
to be displayed below is faithfully representative of the way in which we
have actually designed a multiprogramming system with fairly refined
management rules. Second, that it is my firm belief tha t by consistent
application of such methods our ability to deal with large problems will
improve. Third, that anyone who doubts the practicability of the method
should t ry to apply it. Finally, that I know only too well that I can force
no one to share my beliefs.

(The chosen problem is a synchrolfization problem as encountered in
multiprogramming. Many of my readers will be unfamiliar with this
type of problem and the article may therefore strike them as two articles
merged into one: one dealing with multiprogramming and another deal-
ing with the constructive approach. This shortcoming of the paper has
been pointed out to me by various unofficial referees of its preliminary
version: I agree with their criticism and apologize to my readers. I have,
however, stuck to my multiprogramming example, for the general read-
er's unfamiliarity gives me a unique opportunity to illustrate the ap-
proach by treating a simple example, the solution of which is not im-
mediately obvious to everyone. And this, I feel, illustrates the power
of the approach more convincingly than treating a traditional problem.)

2. The demonstration problem.

For the purpose of demonstration I have chosen the following problem.
We consider two parallel, cyclic processes, called "producer" and "con-
sumer" respectively. They are coupled to each other via a buffer (in
this example of unlimited capacity) for "portions" of information. In
each of its cycles the producer puts a next portion into the buffer, in
each of its cycles the consumer takes a portion from the buffer. The
buffer is allocated in the universe surrounding the two processes; after
introduction and initiation of this universe, the two processes are started
in parallel, as indicated below by the bracket pair "parbegin" and
"parend". I t is also indicated that the activity of the producer as well
as the activity of the consumer can be regarded at this stage as an
alternating succession of two actions. I t is understood tha t the actions
labelled P1 (i.e. actual production) and C2 (i.e. actual consumption) are
the time-consuming actions (probably synchronized to other processes)

17 6 E.W. DIJKSTRA

of which the possibility of parallel execution is of actual interest, while
the actions labelled P2 and C1, in which portions are transmitted into
or from the buffer (the only ones in which reference to the common
buffer is made) will be very concise actions (some bookkeeping with
pointers and links, say), the potential parallelism of which can be ig-
nored if desired. We depart in our example from the (hopefully now
self-explanatory) structure given below; here the actions invoked are
to be considered as available primitives.

Version 0 :

begin initiate an empty buffer;
parbegin

producer: begin local initiation of the producer;
P I : produce next t)ortion locally;
P2: transmit portion into the buffer;

goto P1
end;

consumer: begin local initiation of the consumer;
CI: transmit portion from buffer;
C2: consume new portion locally;

goto C1
end

parend
end

For the proper co-operation of the two processes as described above
we must assume an implicit synchronization, preventing the consumer
to t ry to take a portion from an empty buffer. In the following we shall
refuse to make any assumptions about the speed ratio of the two pro-
cesses and our task is to program the synchronization between the two
processes explicitly. (The synchronizing primitives I intend to use for
this solution will be described in due time.)

NOTE. For brevity I omit the fairly simple proof that the above prob-
lem is well-posed in the sense tha t a synchronization satisfying the above
requirement does not contain the danger of the so-called "deadly em-
brace", i.e. one or more processes getting irrevocably stuck because they
are waiting for each other. I do so because this proof is more concerned
with the problem as posed than with the task of programming it and the
latter is the true subject of this paper.

A C O N S T R U C T I V E A P P R O A C H T O T H E P R O B L E M O F P R O G R A M . . . 177

3. Formalization of the required dynamic behaviour.

Our first step is the introduction of suitable variables in terms of which
we can give a more formal description of the specification of the required
dynamic behaviour. As stated, the consumer should behave in such a
way tha t it does not t ry to take a portion from an empty buffer. The
first question is: how do we keep track of its emptiness ? As a result of
transmitting a portion into the buffer, the buffer becomes non-empty,
as a result of transmitting a portion from the buffer the latter only
becomes empty if its last and only portion has been taken from it. In
other words, we can keep track of its emptiness (i.e. whether the buffer
contains zero portions) provided that we can answer the question whether
the (non-empty) buffer contains exactly 1 portion. Repeating the argu-
ment we conclude tha t the number of portions in the buffer is a vital
quantity. Therefore we introduce an integer variable, "n" say, whose
value has to equal the number of portions in the buffer. The rule to be
followed this time is particularly simple: first, initiate the value of "n"
together with the initiation of the buffer, so tha t the relation

"n = number of portions in the buffer" (1)

is satisfied to start with. From then onwards, adjust the value of the
variable called "n" whenever the number of portions in the buffer is
changed, i.e. when transmitting a portion into it or from it. As a result
the relation (1) will always be satisfied.

From now onwards the three actions initiating or changing the buffer
contents are regarded as actions including the proper operation on the
variable called "n". To indicate this, we may write Version 1 :

begin integer n;
initiate an empty buffer including "n := 0";
parbegin

producer: begin local initiation of the producer;
P1 : produce next portion locally;
P2:

end
consumer: begin

CI:
C2:

end
parend

end

transmit portion into the buffer including
"n := n-~ l " ;

goto P1

local initiation of the comsumer ;
transmit portion from buffer including "n : = n - 1";
consume new portion locally;
goto C1

178 E.W. DIJKSTRA

Thus we have achieved tha t the specification of the dynamic behavi-
our can be formulated by the requirement tha t the inequality

n _>_ 0 (2)
will always be satisfied.

(R r ~ m x . Already in the transition from the original Version 0 to
Version 1 we can observe one of the origins of the efficiency of the con-
structive approach. If we had regarded the Version 1 as given but in
addition to this wanted to identify the current value of n with the cur-
rent number of portions in the buffer, we would have to observe its
initiation and its adjustments, but in excess to this we would have to
read the whole program in order to verify that no other operations on it
can occur. In the present constructive approach we exploit the fact tha t
the actions labelled P$ and C2 by definition do not refer to the buffer.)

1
4. Analysis of the formalized requirements.

We now proceed from Version 1 and requirement (2). The latter require-
ment is satisfied initially; we have only to synchronize the two processes
in such a way tha t it remains satisfied.

From the fact tha t requirement (2) concerns the value of the variable
called "n" only, it follows tha t the processes can only cause violation by
acting on this variable, i.e. only via the actions labelled "P2" and " C I "
respectively. Closer inspection of the requirement ("n > 0") and the ac-
tions shows tha t the action labelled "P2" (including "n := n + 1") is
quite harmless, because

n > 0 implies n + l > 0 ,

but tha t the action labelled " C I " (including "n := n - 1") may indeed
cause a violation. More precisely, as

n > 1 implies n - 1 ~ 0 ,

the action labelled "CI" is harmless when initiated when

> 1 (3)

while when n = 0 it would cause violation; under the latter circumstance
it has to be postponed.

(REMARK. Our last conclusion is tha t the only possible harm is trying
to make the buffer more empty than empty. I ts obviousness here is a
direct consequence of the simplicity of this example. The point is, tha t
this conclusion could be reached by inspection of the formalized require-
ment (2) and the operations on the variables concerned. In the case of

A C O N S T R U C T I V E APPROACYcI T O T H E P R O B L E M O F P R O G R A M . . . 179

a more refined management, the requirements analogous to (2) are no
longer a simple inequality and their analysis will really tell you all the
danger points.)

5. Consequence of the preceding analysis; the unstable situation.

In the previous section we have concluded tha t the action labelled
"CI" is the only danger point. Having here only one consumer, we
could have solved the problem logically by inserting just in front of it
a wait cycle

"CO: if n = 0 then goto CO"

but our group refused to implement this busy form of waiting, because
in a multiprogrammed environment it seems a waste to spend central
processor time on a process tha t has already established tha t for the
time being it cannot go on; furthermore this solution does not admit a
straightforward generalization to, say, more consumers. Therefore we
have implemented means--viz, the synchronizing primitives--by which
a process can go to sleep until further notice (a sleeping process being by
definition no candidate for processor time), leaving of course to the
other processes the obligation to give this "further notice" in due time.
This is so closely analogues to usual optimizing techniques that I proceed
with this multiprogramming example in full confidence tha t the uni-
programmer will be able to apply similar considerations to his own
tasks.

We see ourselves faced with the decision whether the action labelled
" C I " should take place or not. Earlier we have seen tha t this decision
depends on the current value of the variable called "n" . Recently we
have seen tha t under certain circumstances we refuse to regard this as
a private decision of the consumer (this would imply the busy form of
waiting) but wish to delegate it (via the mechanism of the further notice)
to the producer. As long as it was a private decision of the consumer,
inserting it at the right place in the consumer's text was a sufficient
means to ensure tha t the decision was taken in accordance with the
dynamic progress of the consumer. As soon as this decision may be taken
by another process in this example by the producer--the dynamic
progress of the consumer becomes a question of general interest, in
particular whether the consumer is ready for the next action labelled C1.
We introduce a boolean variable, called "hungry" whose value has to
indicate explicitly tha t the consumer's progress has reached the stage
tha t the decision to execute or to postpone the action labelled "CI" is
relevant.

B I T 8 - - 12

180 E.W. DIJKSTRA

To ensure tha t the variable called "hungry" has this meaning, we must

1) insert within the consumer's cycle the assignment "hungry :=
t rue" just in front of the statement labelled " C I " ;

2) include the assignment "hungry:= false" as part of the action
labelled " C I " ;

3) initiate in the universe the variable called "hungry" in accordance
with the starting point in the consumer's cycle.

The variable called "hungry" is an explicit coding of the consumer's
progress, analogous to the variable called "n" , introduced as an explicit
coding of the number of portions in the buffer. We arrive at Version 2:

begin integer n; Boolean hungry;
initiate an empty buffer including "n := 0";
hungry : = false;
parbegin

producer: begin local initiation of the producer;
P I : produce next portion locally;
P2: transmit portion into the b~lffer including

" n : = n + 1";
goto P1

end;
consumer: begin local initiation of the consumer;

CO: hungry : = true;
C1 : transmit portion from buffer inclu~ling "n : = n - 1"

and "hungry : -= false" ;
C2: consume new portion locally;

goto CO
end

parend
end

From relation (3) and the meaning of the variable called "hungry"
we now deduce tha t the action labelled "CI" should take place whenever

n > 1 and hungry (4)

becomes true, the action labelled " C I " itself causing (4) to become
false again. In other words: we must see to it tha t (4) characterizes what
we could call "an unstable situation", for as soon as it emerges it should
be resolved by the action labelled "CI" .

Having no permanently active observer tha t will give alarm whenever
the unstable situation arises, we must allocate the inspection for the

A C O N S T R U C T I V E A P P R O A C H T O T H E P R O B L E M O F P R O G R A M . . . 181

unstable situation (and, if found, its subsequent resolution by action
"CI") somewhere in the sequential processes. The necessary and suffi-
cient measure is to at tach this inspection as an appendix to each action
that may have generated the unstable situation from a stable one, thus
pinning the responsibility to resolve the unstable situation down to the
process that has generated it.

Some elementary logic applied to (4) tells us that this transition can
only be effected by an action assigning the value true to the variable
called "hungry" or by an action increasing the value of the variable
called "n" (or by an action doing both, not occurring in this example).
In terms of Version 2: the instability may be reached as a result of the
action labelled "CO" (on account of "hungry := true") and of the action
labelled " P 2 " (on account of "n := n+ 1"). So the action labelled "P2"
--al located in the producer--might get at tached to it as an appendix
the action labelled "CI" , originally allocated in the consumer!

6. Interlude on synchronizing primitives.

At this stage of the discussion I must insert an interlude because I
expect many a reader to be unfamiliar with the basic problems of pro-
gramming parallel processes, the field from which our example happens
to have been taken.

We need primitives to control that processes may go to sleep or may
be woken up. For this purpose we introduce

1) special purpose binary valued variables, called "semaphores". A
semaphore may have the values 0 and 1. Semaphores are allocated in
the surrounding universe and are initiated before the parallel processes
are started. (Semaphores may be generalized from two-valued quanti-
ties to non-negative integers. In this article we do not do so, for our
example is so simple that the generalized semaphore would provide a
ready made solution!)

2) two special operations, called the P- and the V-operation respec-
tively. The parallel processes shall access the semaphores via these opera-
tions only.

The P-operation on a semaphore can only be completed when the
semaphore value equals 1. I ts completion implies tha t the semaphore
value is reset to 0. If a process initiates a P-operation on a semaphore
with at that moment a value equal to 0, "the process goes to sleep, the
P-operation remains pending on this semaphore".

The V-operation on a semaphore is only defined if its initial value
equals 0. I t will then set the semaphore to 1. If no P-operation is pending

182 E .W. DIJKSTRA

on this semaphore the V-operation has no farther effect. If one or more
P-operations are pending on it, the V-operation will have the further
effect tha t exactly one of the pending P-operations will be completed
(thereby resetting the semaphore to the value 0), i.e. the process in
which this P-operation occurred is woken up again.

As a result a semaphore value equal to 1 implies tha t there are at tha t
moment no P-operations pending on it.

The semaphores are used for two entirely distinct purposes; both
standard usages will occur in the example.

On the one hand we have the so-called "private semaphores", each
belonging to a specific sequential process, tha t will be the only one to
perform a P-operation on it, viz. where the process might need to be
delayed until some event has occurred: the semaphore values 0 and 1
at the initiation of the P-operation represent the situation tha t the event
in question has not yet or has already occurred. As a rule the universe
initiates private semaphores with the value 0.

On the other hand we have the semaphore(s) used for the implementa-
tion of so-called "critical sections", the executions of which have to
exclude each other in time. Such critical sections can be implemented by
opening them with a P-operation and closing them with a V-operation,
all on the same semaphore with initial value 1. At each moment the
value of such a semaphore for mutual exclusion equals the number of
processes allowed to enter a section critical to it. The purpose of critical
sections is to eater for unambiguous modification and interpretation of
universal variables (such as "n" and "hungry" in our example).

Alternatively: at a certain level of abstraction we can visualize a
single sequential process as a succession of "immediate actions"; the
time taken to perform them is logically immaterial, only the states (as
given by the values of the variables) observable in between the actions
have on tha t level a logical significance. I t is only when we shift to a
lower level of abstraction and implement the actions themselves by
means of (smaller) sequential sub-processes, tha t the intermediate states
as well as their periods of execution enter the picture. And it is only at
this lower level tha t "mutual exclusion in t ime" has a significance. In
a single sequential process successive actions (now regarded as sub-
processes) exclude each other in time automatically, because the next
one will only be initiated after the preceding one has been completed. In
multiprogramming the mutual exclusion at the lower level of abstrac-
tion is no longer automatically guaranteed and the fact that on the higher
level we regard them as single "immediate actions" requires then ex-
plicit recognition. This is exactly what the critical sections cater for.

A C O N S T R U C T I V E A P P R O A C H T O T H E P R O B L E M O F P R O G R A M . . . 1 8 3

7. R e s o l u t i o n of the unstable s i tuat ion and s y n c h r o n i z a t i o n of the
p r o c e s s e s .

Our analysis of the unstable situation ended with the conclusion that
the action labelled "Cl", originally allocated in the consumer, will be
at tached as a conditional appendix to the actions that might generate
the unstable situation, i.e. the ones labelled "C0" and "P2" respectively.

To pin the responsibility for the resolution of the unstable situation
down to the process that has generated it, the latter one must be uniquely
defined (which is not the case if the effective assignments "n := 1" as
part of P2 and "hungry := t rue" as par t of C0 are allowed to take place
simultaneously) and it must have resolved the unstable situation before
the other process may have discovered it. In other words, creation of
the unstable situation and its subsequent resolution must be regarded
as a single "immediate action" in the sense of the last paragraph of the
interlude. We shall implement them by critical sections controlled by a
semaphore, "mutex" say, that will be initiated with the value 1.

Finally, in Version 2 the sequential nature of the consumer guaranteed
that each execution of the action labelled "C2" would be preceded by
one execution of the action labelled "CI" . This implicit sequencing can
be made explicit with the aid of a private semaphore of the consumer,
"consem" say, (to be initiated with the value 0) by concluding the ac-
tion labelled "CI" with "V(consem)" and opening the action labelled
"C2" with "P(consem)". The sequencing has to be made explicit because
the action labelled "CI" may now occur as an activity of the producer.

After these considerations the final version of the program is given.
For reasons of clarity and economy (of writing and thinking) the action
labelled "CI" has been included in the body of a procedure declared in
the universe.

NOT~ 1. The program given below does not pretend to be the only,
or the best or the most economical solution. I t pretends to be a correct
solution. I t is general in the sense that more complicated similar prob-
lems can be solved along the same pattern.

NOTE 2. As announced (in section 2) the potential parallelism of the
action "transmit portion into the buffer" and "transmit portion from
buffer" could be ignored if desired. This indeed has happened, as the
actions only occur within critical sections. The generalization to more
producers, more consumers etc. is now straightforward.

NoT~ 3. The step from Version 2 to the Final Version is rather large:
for various unofficial referees of the preliminary version of this paper the

1 8 4 E, W. DI JKS TRA

Final Version still came straight from "The Magician's Box". I can under-
stand their feelings, I have not succeeded in remedying the situation,
"in buffering the shock of invention".

Final Version:
begin integer n; Boolean hungry; semaphore mutex, consem;

procedure resolve instability i f present;
begin if n >-_ 1 and hungry then

begin transmit portion from buffer; n := n - 1 ;
hungry := false; V(consem)

end
end;
initiate an empty buffer; n := 0;
hungry : = false; mutex : = 1 ; consem : = 0;
parbegin

producer: begin local initiation of the producer;
P I : produce next portion locally;
P2 : P(mutex) ;

transmit portion into the buffer; n : = n + 1 ;
resolve instability i f present;
V (mutex) ;
goto P1

end ;
consumer: begin local initiation of the consumer;

CO: P(mutex) ;
hungry := true; resolve instability i f present;
V (mutex) ;

C2: P(consem) ; consume new portion locally;
goto CO

end
parend

end

The above is as faithful a reproduction as I can give of the kind of
reasoning we applied in the construction of a multiprogramming system,
albeit interlaced with explanatory paragraphs, covering the insights we
had already gained at an earlier stage by just thinking about the prob-
lems involved in the programming of parallel processes. At the end,
when we were all familiar with this type of problem, the reasoning
needed to derive the program from specifications much more com-
plicated than the present example, used to be given on a single page or
less.

A C O N S T R U C T I V E A P P R O A C H TO T H E , P R O B L E M OF P R O G R A M . . . 1 8 5

8. Concluding remarks.

First, one can remark that I have not done much more than to make
explicit what the competent programmer has already done for years,
be it mostly intuitively and unconsciously. I admit so, but withoUt any
shame: making his behaviour conscious and explicit seems a relevant
step in the process of transforming the Art of Programming into the
Science of Programming. My point is that this reasoning can and should
be done explicitly.

Second, I should like to stress that by using the verb "to derive" I
do not intend to suggest any form of automatism, nor to underestimate
the amount of mathematical invention involved in all non-trivial pro-
gramming, on the contrary! But I do suggest the constructive approach
sketched in this paper as an accompanying justification of his inventions,
as a tool to check during the process of invention that he is not being
lead astray, as a reliable and inspiring guide.

Third, I am fully aware tha t the style of reasoning I have applied,
though possibly appealing to some, might easily appal others. For this
difference in taste I blame them as little as they should blame me. I can
only hope that they will find a constructive style satisfactory to them.

Finally, I should like to point out that the constructive approach to
program correctness sheds some new light on the debugging problem.
Personally I cannot refrain from feeling that many debugging aids tha t
are en vogue now are invented as a compensation for the shortcomings
of a programming technique that will be denounced as obsolete within
the near future.

Acknowledgements.

Acknowledgements are due to my closest collaborators C. Bron,
A. N. Habermann, F. J. A. Hendriks, C. Lightmans and P. A. Voorhoeve,
for by working in the way they did, they convinced me of the practicabil-
i ty of the constructive approach when faced with a large problem.

Acknowledgements are also due--al though they may be unaware of
the f ac t - - to Peter Naur and my colleague Gerhard W. Veltkamp. To
the former because he convinced me that something should and could
be done regarding program correctness, to the latter for his inspiring
faith in my efforts, his patience when listening to me and his unrelenting,
pityless criticism whenever I indulged in disguising sloppy reasoning by
a verbal show.

186 E.W. DIJKSTRA

R E F E R E N C E S

1. Rober t W. Floyd, Assigning Meanings to Programs, Proceedings of Symposia in Ap-
plied Mathematics, Volume 19, Mathematical Aspects o/ Computer Science, pg.
19-32, American Mathematical Society, 1967.

2. J o h n McCarthy and James Painter , Correctness of a Compiler for Arithmetic Expressions,
Technical Repor~ No. CS38, April 29, 1966, Computer Science Depar tment , Stan-
ford Universi ty.

3. Pe ter Naur, Proof o/Algorishms by General Snapshots, BIT vol. 6, 1966, pg. 310-316.

DEPT. OF MATHEMATICS
TECHNOLOGICAL UNIVERSITY EINDHOVEN
EINDHOYEN, THE NETHERLANDS

